Modeling of Irrigation Management to Mitigate Pesticide Leaching in Vulnerable Soil

Murray Clayton M. Ag. Eng.

Staff Environmental Scientist
Environmental Monitoring Branch
California Department of Pesticide Regulation

Overview of DPR's LEACHM Modeling Tool

- Initially developed to identify mitigation measures for California ground water contaminants (pesticides listed in CCR section 6800a)
 - Irrigation management identified as effective mitigation in leaching soils
 - Required irrigation efficiencies to increase from 60 70% (surface irrigation) to 80% (pressurized irrigation)
 - Development & verification of modeling tool based on pesticides found in
 California ground water from non-point-source detections in leaching soils:
 - atrazine bromacil diuron simazine norflurazon hexazinone

 Model later adapted to evaluate leaching potential of new pesticides submitted for California registration

Development of LEACHM Modeling Tool

- Development of modeling process relied on physical/chemical properties and non-point-source detections in ground water of: atrazine bromacil diuron simazine norflurazon hexazinone
 - All exhibit physical/chemical properties consistent with persistence and mobility in soil

	Soil mobi	lity parameters	Soil persistence parameters				
	Solubility	Koc	Aerobic	Anaerobic	Hydrolysis		Field
	(mg/L)	(cm^3/g)	metabolism	metabolism	(days)		dissipation
			(days)	(days)			half-life
	SNV > 3	SNV < 1900	SNV > 610	SNV > 9	SNV > 14		(days)
Bromacil	929	17	347	73	stable		157
Diuron	36	499	372	995	1,290*		118
Atrazine	33	93	146	159	stable		117
Simazine	6	340	110	71	stable		90
Norflurazon	34	617	172	348	2,650*		365
Hexazinone	29,800	642	222	232	stable		118

- All are soil applied herbicides with significant use in California
- All found in California ground water in multiple wells by DPR

	State-wide use	Average crop	Well water concentration ug/L		Average depth	Number of
	1990 – 2009	application rate	95 th percentile	50 th percentile	to ground water	unique well
	(lbs)	(lbs/acre)	_	-	(feet)	detections
Bromacil	1,663,961	1.23	3.68	0.44	42	236
Diuron	22,688,605	1.45	1.20	0.25	44	457
Atrazine	964,349	1.37	0.70	0.15	49	176
Simazine	15,121,778	1.24	0.59	0.14	42	624
Norflurazon	3,303,174	1.10	0.57	0.10	34	72
Hexazinone	2,262,660	0.53	0.26	0.08	35	23

Conceptual Modeling Process

Pesticide input

- Physical/chemical property of atrazine, bromacil, diuron, simazine, norflurazon and hexazinone grouped based on their exceedance of SNV's and non-point-source detections
 - Median and nominal values used for solubility, vapor pressure and pesticide application rate
 - Input distributions formed for Koc and field dissipation half-life:

Fin - Koc (ml/g)

Field dissipation half-life

LEACHM pesticide fate and transport model initiated for 1000 executions

Well

Conceptual Modeling Process

Simulated leaching of grouped pesticides using empirical model

- Movement of residues modeled with velocity estimate
- Residue dissipation rates not available
 - Studies indicate dissipation rates are slower
 - Default to longest field dissipation rate for grouped pesticides (1 y)

- Residues diluted into annual recharge water (0.5 m depth)
- Age of ground water recharge (1 30 years, median 6 y)
- Residues dissipation dominated by hydrolytic processes but rates are not available but typically very long
 - Default to longest field dissipation rate for grouped pesticides (1 y)

Verification of Probabilistic Model

atrazine bromacil diuron simazine norflurazon hexazinone

Model predictions for combined pesticides

Water application at 160% plant demand ~
 65% irrigation efficiency

25th percentile = 0.14 ppb

50th percentile = 0.23 ppb

75th percentile = 0.35 ppb

95th percentile = 0.48 ppb

Observed data for combined pesticides

25th percentile = 0.12 ppb

50th percentile = 0.21 ppb

75th percentile = 0.32 ppb

95th percentile = 0.74 ppb

Mitigating Pesticide Movement to Ground Water

atrazine bromacil diuron simazine norflurazon hexazinone

Model predicted well water concentrations for combined pesticides

- Irrigation at 160% plant demand ~ 65% irrigation efficiency
- Concentration 95th percentile = 0.47 ppb

- Irrigation at 133% plant demand ~ 80% irrigation efficiency
- Concentration 95th percentile = 0.05 ppb